Step of Proof: eq_int_eq_true_intro
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
eq
int
eq
true
intro
:
1.
i
:
2.
j
:
3.
i
=
j
(
i
=
j
) = tt
latex
by RW bool_to_propC 0
THEN (Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
TH
)) (first_tok :t) inil_term)
latex
TH
.
Definitions
t
T
,
,
P
&
Q
,
P
Q
,
x
:
A
.
B
(
x
)
,
P
Q
,
P
Q
Lemmas
assert
of
eq
int
,
eqtt
to
assert
,
assert
wf
,
btrue
wf
,
eq
int
wf
,
bool
wf
,
iff
transitivity
origin